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Abstract

A model for the description of the growth and collapse of a vapor bubble in a small tube is presented and some
typical results are illustrated. It is found that the maximum volume of the bubble and its lifetime depend in a
complex way on the channel geometry and the initial energy distribution. However, during most of the bubble's

lifetime, the internal pressure is very small and the dynamics mostly governed by the external pressure. The
motivation for this work is o�ered by the possibility to use vapor bubbles as actuators in ¯uid-handling
microdevices. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The silicon microfabrication techniques recently

developed render new technologies possible and novel

regions of parameter space worthy of study. An

example is the use of gas or vapor bubbles as actuators

without mechanical moving parts. An intriguing possi-

bility explored in Ref. [1] is a micropump based either

on a Marangoni e�ect or on the suitably phased

growth and collapse of bubbles generated by small

heaters in liquid-®lled microchannels.

The device described in Ref. [1] operates at frequen-

cies of the order of 1 Hz in tubes with a diameter of a

few micrometers. While that size range may be useful

for some applications, here we are interested in tubes

with a diameter of the order of a hundred micrometers

that are of interest, for example, for drug delivery, on-

chip chemical analysis, and others [2±5]. The explo-

ration of vapor bubble formation in this size range is

in a very early stage. A limited number of papers [6,7]

deal with boiling in con®ned spaces and narrow gaps

[8]. Models of bubbles growing in pores and pore net-

works are encountered in the literature on boiling in

porous media [9,10], but in all these situations heat

transfer to the bubble occurs from the entire solid sur-

face rather than from a very localized heated region as

in the situation of present concern. A similar comment

applies to papers motivated by phase-change phenom-

ena in micro heat pipes [11,12].

Closer to the situation investigated here is the mod-

eling of drop ejection in ink-jet printers [13,14], and of

bubble growth on microheaters [1,15,16]. In order to

deal with the rather formidable di�culties of the prob-

lem, these models contain several idealizations that we

try to improve upon in the present paper. We allow

for the presence of more than one spatial dimension in

the problem, for the momentum of the liquid, the

presence of the tube wall, and several other e�ects.

While the present model can in no way claim to be de-

®nitive, it is less idealized than others and sheds an

interesting light on several of the controlling aspects of

the phenomenon. For example, one of the interesting

conclusions of the study is the extreme brevity of the

time during which the bubble internal pressure is large.

During most of the bubble life, the internal pressure is
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Nomenclature

a=a(t ) bubble radius
An coe�cients in the expansion (7) of fT

Bn, Cn coe�cients in the expansions (8), (9) of fl,r

Dn coe�cients in the expansion (10) of fB

cpV speci®c heat of the vapor
er unit vector in the radial direction out of the bubble

ez unit vector in the direction of the tube axis
k liquid thermal conductivity
ll,r lengths of the liquid columns on the left and right of the bubble

L length of tube, see Fig. 1
L latent heat
MV(t ) mass of vapor in the bubble
n unit normal directed out of the bubble

p liquid pressure
Pl,r pressures in the liquid reservoirs at the left and right of the tube, see Fig. 1
P(t ) pressure in the bubble

Psat saturation vapor pressure
r radial coordinate in the cylindrical system, see Fig. 1
rB radial coordinate in the spherical coordinate system centered at the bubble center

RT tube radius, see Fig. 1
u velocity
SB bubble surface

t time
TS(t ) surface temperature of the bubble
T1 undisturbed liquid temperature
VB bubble volume

Vk velocity of the kth collocation point on the bubble surface
Vl,r liquid velocities at the left and right ends of the tube
z axial coordinate in the cylindrical system, see Fig. 1

ZB(t ) position of the bubble center in the cylindrical coordinate system

Greek symbols
d parameter for grid control
DT parameter characterizing the initial temperature distribution

E adjustable parameter de®ned in Eq. (28)
yB angular coordinate in the spherical coordinate system centered at the bubble center
l parameter characterizing the initial temperature distribution

m liquid viscosity
rV vapor density
rsat saturation vapor density

fB contribution of the bubble surface to the velocity potential
fl contribution of the tube left end to the velocity potential
fr contribution of the tube right end to the velocity potential
fT contribution of the tube wall to the velocity potential

F velocity potential
F21 values of the potential in the reservoir far away from the tube ends
s surface tension coe�cient
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negligibly small and the motion occurs therefore under
the action of the external pressure alone.

2. Formulation

We assume cylindrical symmetry stipulating the
bubble is generated and remains on the tube axis. We
take the bubble to be a sphere from inception until its
radius is nearly equal to the tube radius. Further

growth is modeled by inserting a cylindrical volume
between two hemispheres as shown in Fig. 1. We refer
to these two stages as the spherical and elongated

bubble stage, respectively. When the bubble collapses,
we switch back from the elongated to the spherical
model when the height of the cylindrical volume

becomes zero.
In setting up our mathematical model we exploit the

fact that, in order to have a repeatable and reliable
bubble generation not dependent on the presence of

nucleation sites, whose randomness would render the
operation of the device irregular, it is necessary to rely
on spontaneous nucleation. This requires high tem-

peratures, with the consequence that the initial bubble
growth is fast, with a velocity of the order of 2 m/s.
For a 100 mm channel and a liquid like water we thus

have a Reynolds number of the order of several hun-
dreds. Furthermore, the phenomenon is highly transi-
ent with large accelerations, which also contribute to

rendering inertia a dominant e�ect. Thus the early
stages of the process can be treated neglecting viscous
e�ects. The same approximation is also valid near the

end of the bubble life, when most of the energy has
been converted to kinetic form. These considerations
suggest that viscosity is only important during the in-

termediate phases of the bubble lifetime, which we
identify with the phase where the elongated bubble
model is employed. During the spherical bubble stage,
we solve numerically, by an orthogonal expansion/col-

location method, the potential ¯ow problem of a
sphere expanding or collapsing inside a cylinder. When
we switch to a quasi-one-dimensional model, viscous

e�ects are included approximately. Heat transfer is
accounted for in an approximate way in both regimes.
We present separate formulations for the ¯uid mech-

anics and the heat transfer aspects of the problem.

2.1. Fluid mechanics

We introduce a velocity potential F satisfying the
Laplace equation, in terms of which the velocity u is
given by u=rF. We assume that the tube in which the

bubble grows has length L, radius RT, and connects
two liquid-®lled reservoirs where the pressures far
away from the tube ends are Pl(t ), Pr(t ), respectively

(Fig. 1).
As in Ref. [17], it is found that an appropriate form

for the Bernoulli integral is

Fig. 1. Sketch of the model studied in this paper. When the bubble is su�ciently small, it is approximated as a sphere. After it has

grown to nearly occlude the tube, it is approximated as a cylinder with two hemispherical caps.
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@F
@ t
� 1

2
u2 � p

r
� Pl � Pr

2r
�1�

where p is the liquid pressure. The boundary con-

ditions on F on the tube's left and right end-surfaces
may be approximated by [18±20]

F� RTnrF � F21, at z � 0,L, �2�

where the unit normal n is directed outside the tube
volume and F21 are the values of the potential in the

reservoirs far away from the tube and given by

F21 �2
1

2

�t
0

Pl ÿ Pr

r
dt: �3�

On the tube wall the normal velocity vanishes

@F
@r

����
r�RT

� 0: �4�

In the following we need to distinguish the stages of

the process during which the bubble is assumed to be
spherical, from that in which the bubble is elongated.

2.1.1. Spherical bubble
We assume the pressure P(t ) inside the bubble to be

spatially uniform and dependent on time only. Upon

imposing that the di�erence between the bubble in-
ternal and external pressure be balanced by the e�ect
of surface tension, the Bernoulli integral evaluated at
the bubble surface gives

@F
@ t
� 1

2
u2 � Pÿ sC

r
� Pl � Pr

2r
, �5�

where s is the surface tension coe�cient and C the
curvature.

The boundary of the computational domain consists
of the bubble surface, the tube surface, and two circles
at the left and right ends of the tube separating the

tube volume from the reservoirs. We express the vel-
ocity potential as a superposition of several terms as
follows [17]:

F � fB � fT � fl � fr: �6�

Each term is a solution of the Laplace equation built

in such a way that, on each of the surfaces into which
the total boundary of the problem can be decomposed
(i.e., the bubble, the lateral surface of the tube, and the
left and right circles), it reduces to a complete set of

eigenfunctions. As will be shown below, in this way a
unique solution of the problem can be found. Thus we
take

fT �
X1
n�1

AnI0

�
npr
L

�
sin

npz
L

, �7�

where I0 is a modi®ed Bessel function and r, z are (glo-
bal) cylindrical coordinates with origin at the center of

the left end-surface of the tube and axis coincident
with that of the tube (Fig. 1). By construction fT

vanishes at the left and right end-surfaces of the tube.

In (6), the term fl corresponding to the contribution
of the left end-surface is written as

fl � B0�L� RT ÿ z�

�
X1
n�1

BnJ0

�
jn

r

RT

�"
sinh

�
jn

z

RT

�

ÿ tanh� jnL=RT� � jn
1� jn tanh� jnL=RT� cosh

�
jn

z

RT

�#
,

�8�

where J0 is the Bessel function of order 0 and the jns
are the zeros of J1. This expression satis®es the bound-
ary condition (2) on the circle at the right end of the
tube and the condition (4) on the tube wall. The con-

tribution of the right end-surface, satisfying analogous
boundary conditions, is similar:

fr � C0�z� RT�

�
X1
n�1

CnJ0

�
jn

r

RT

��
sinh

�
jn
Lÿ z

RT

�

ÿ tanh� jnL=RT� � jn
1� jn tanh� jnL=RT� cosh

�
jn
Lÿ z

RT

��
:

�9�

For the contribution fB of the bubble we write

fB �
X1
n�0

Dn

�
a

rB

�n�1
Pn�cos yB�, �10�

where a=a(t ) is the bubble radius, the Pns are
Legendre polynomials, and we have introduced a local

spherical coordinate system (rB, yB), with the origin at
the center of the bubble and the polar axis coincident
with the positive z-axis of the global cylindrical system.
Local and global coordinates are related by

rB �
�����������������������������
�zÿ ZB�2 � r2

q
, cos yB � zÿ ZB

rB

, �11�

where ZB(t ) is the position of the bubble center in the
cylindrical coordinate system. The inverse relations are

z � ZB � r cos yB, r � rB sin yB: �12�

In the global coordinate system, the surface of the
bubble is de®ned by z=x(s ), r=Z(s ), where s is the arc
length along the surface of the bubble in the meridian

plane.
The rationale for the form (6) of F can now be

explained as follows. Consider, for example, the
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boundary condition (4) of vanishing normal velocity at
the tube surface. Since fl,r already satisfy this con-

dition by construction, we ®nd, for r=RT,

X1
n�1

np
L
AnI1

�
npRT

L

�
sin

npz
L
� ÿ@fB

@r

����
r�RT

: �13�

Upon taking a scalar product with sin(npz/L ), we have

An � ÿ
�
np
L
I1

�
npRT

L

��ÿ1
2

L

�L
0

dz

sin
npz
L

@fB

@r

����
r�RT

, �14�

which, from (10), expresses the coe�cients {An } in
terms of the {Dn }. In a similar fashion, upon substitut-
ing F into the boundary condition (2) at the left of the

tube, we have

B0�L� 2RT� ÿ
X1
n�1

BnJ0

�
�
jn

r

RT

�
2jn � � j2n � 1� tanh� jnL=RT�

1� jn tanh� jnL=RT�

� Fÿ1 ÿ fB

��
z�0�RT

@

@z
�fT � fB�

����
z�0
:

�15�

From this equation, the coe�cients {Bn } can be related

to the others by using the completeness and orthogon-
ality of the J0( jnr/RT). The analogous relation at z=L
is

C0�L� 2RT�

ÿ
X1
n�1

CnJ0

�
jn

r

RT

� � j2n � 1� tanh� jnL=RT� � 2jn
1� jn tanh� jnL=RT�

� F1 ÿ fB

��
z�LÿRT

@

@z
�fT � fB�

����
z�L
: �16�

The previous relations show how the solution that we

®nd is unique in spite of the apparent redundancy of
the decomposition (6) of the potential. The point is
that the sets of coe�cients of each expansion can be
related to each other by well-de®ned mathematical op-

erations due to the key property that each term, when
restricted to the corresponding surface, consists of the
superposition of a complete set of functions.

2.1.2. Elongated bubble
When the bubble nearly ®lls the cross section and

starts growing along the tube axis, we switch to a sim-
pler ¯uid mechanical model in which the two liquid
columns ®lling the channel on the left and right sides

of the bubble move as rigid bodies with velocities Vl

and Vr respectively.

The Bernoulli integral on the circle at the right end
of the tube is

@F
@ t
� 1

2
V 2

r �
pr

r
� @F1

@ t
� Pr

r
, �17�

where Vr is the velocity of the liquid exiting the tube.

The time derivative of the condition (2)

@F
@ t
� RT

dVr

dt
� pr

r
� @F1

@ t
�18�

can be used to eliminate @F/@t to ®nd the pressure on
the circle at the end of the tube:

pr

r
� Pr

r
� RT

dVr

dt
ÿ 1

2
V 2

r : �19�

With this result, the equation of motion for the right

liquid column becomes

pR2
Tr

d

dt
�Vr�lr � RT��

�
�
Pÿ Pr ÿ 2s

a
� 1

2
rV 2

r

�
pR2

T ÿ 8plrmVr �20�

where lr is the length of the liquid column on the right
of the bubble and m is the liquid viscosity; the last
term is an approximation to viscous losses in the tube

built on the assumption of fully developed Poiseuille
¯ow [18,21]. Similarly, for the liquid column on the
left of the bubble, we have

pR2
Tr

d

dt
�Vl�ll � RT��

�
�
Pl ÿ P� 2s

a
� 1

2
rV 2

l

�
pR2

T ÿ 8pllmVl: �21�

The initial value for ll,r is determined by calculating

the volume of liquid in the tube on the left and right
of the bubble at the time at which the dynamic model
is switched, and dividing by pR 2

T.

In view of the assumed geometry of the problem
(see Fig. 1), the two velocities are connected by the
obvious relation

pR2
T�Vr ÿ Vl� � dVB

dt
, �22�

where VB is the bubble volume.

2.2. Heat transfer

We assume that the bubble surface is at a spatially
uniform temperature TS(t ), and that thermodynamic
equilibrium conditions prevail so that P=Psat(TS),
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rV=rsat(TS) where rV is the vapor density and the
functions Psat, rsat are de®ned by the thermodynamic

relations expressing saturated vapor±liquid equi-
librium. An energy balance at the bubble surface gives
[22]

LdMV

dt
ÿMV

�
L
TS

ÿ cpV

�
dTS

dt
� ÿ

�
SB

knrT

dSB,

�23�

where L is the latent heat, MV(t ) the mass of vapor in
the bubble, cpV the speci®c heat of the vapor, SB the

bubble surface, k the liquid thermal conductivity, and
n the unit normal directed out of the bubble. From
this equation one can obtain an expression for dTS/dt

from which TS is found upon integration.
As before, we distinguish between the two stages in

the bubble evolution.

2.2.1. Spherical bubble
Heat transfer is most intense during the initial

growth of the bubble. During this stage the motion is

rapid and the stretching imposed by the geometry has
the e�ect of thinning the thermal boundary layer
around the bubble surface. Hence we approximate the

process by assuming that both conduction and convec-
tion are only signi®cant in the radial direction. During
this phase the energy equation in the liquid is therefore

approximated as

@T

@ t
� a2

r2B
_a
@T

@rB

� D

r2B

�
r2B
@T

@ rB

�
, �24�

subject to

T�rB � a�t�,t� � TS�t�, T4T1 as rB41, �25�

where T1 is the liquid temperature far away from the
bubble.

To start the problem we assume a temperature dis-
tribution in the liquid surrounding the bubble given by

T�r,0� ÿ T1 � DT exp

�
ÿ rÿ a�0�

l

�
, �26�

where DT and l are prescribed.

2.2.2. Elongated bubble
During this phase of the bubble life we use an ap-

proximation that can be viewed as a low-order collo-
cation procedure. We write a convection equation simi-
lar to (24) for the two points of the bubble surface on

the tube axis. Since these points are moving with the
velocities Vl,r of the liquid column to which they
belong, we have

@T

@ t
� Vl,r

@T

@ rB

� D

 
@ 2T

@r2B
� 2

RT

@T

@ rB

!
, �27�

with the common boundary condition T=TS at the

bubble surface.
The other `collocation point' (or, more accurately,

ring) is placed on the mid-plane of the cylindrical

portion of the bubble surface. When the bubble has
grown to occupy most of the tube cross section, the
thin layer of liquid separating it from the tube wall is
essentially stagnant (and it would, of course, be exactly

stagnant at the plane of symmetry). Thus, during this
stage, we simply solve two one-dimensional conduction
equations, one in the liquid and one in the tube wall,

coupled by the usual continuity conditions of tempera-
ture and heat ¯ux at the solid±liquid interface. At the
bubble surface we again impose T=TS.

A di�culty arises, however, in switching between the
two models during the growth phase because, if the
bubble is exposed abruptly to the cold wall when the

liquid gap has thinned su�ciently, intense conden-
sation takes place. To avoid this unphysical behavior,
it is necessary to `preheat' the wall. This objective is
accomplished by taking the temperature distribution

calculated from (24) during the spherical stage, dedu-
cing from it the liquid temperature at a distance equal
to the distance of the bubble surface from the wall,

and using this temperature as boundary condition for
the one-dimensional conduction equation in the wall.
This procedure is approximate, and it becomes

gradually worse as the bubble surface gets closer to the
wall since it ignores the e�ect of the wall on convec-
tion. Therefore, when

Tw ÿ T1 � E�TS ÿ T1�, �28�

with E of the order of a few percent, we switch to a
form of the energy equation incorporating a linear vel-

ocity ®eld between the bubble `equator' and the wall:

@T

@ t
� RT ÿ r

RT ÿ a
_a
@T

@r
� D

�
@ 2T

@r2
� 1

r

@T

@r

�
: �29�

The assumption of a linear velocity distribution is mo-
tivated by the structure of the stagnation-point ¯ow
[23], that can be taken to approximate the situation
given the relative narrowness of the liquid gap in this

stage of the bubble motion. Eq. (29) is coupled with
the one-dimensional conduction equation in the wall
as before. In view of the brevity of the process, in

these calculations we take the wall to be in®nitely
extended normally to the channel surface.
When the assumption of spherical symmetry is aban-

doned in the heat transfer model, the heat ¯uxes calcu-
lated at the `poles' of the bubble (on the tube axis) and
around its `equator' will in general be di�erent. In
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these conditions, in order to approximate the surface
integral (23), we assume a linear interpolation for the

heat ¯ux along the curved surface of the bubble. The
heat ¯ux along the cylindrical portion of the bubble
surface is assumed to be spatially uniform.

3. Solution procedure

The mathematical formulation of the previous sec-
tion is solved numerically by marching forward in
time. Since, given the complexity of the model, the

sequence of the calculation is not entirely straightfor-
ward, it is appropriate to describe it here in some
detail. Again we distinguish between the spherical and

elongated bubble stages.

3.1. Spherical bubble

Suppose that the bubble radius, radial velocity, axial
position, axial velocity, and all the coe�cients in the
expansions are known at time t. To advance to time

t+Dt we proceed as follows. We select N equispaced
points on the bubble surface and use the Bernoulli
integral (5) to write the convective derivative of the po-

tential at each one of these points. Thus, for the gen-
eric point k, we have�
DF
Dt

�
k

�
�
@F
@ t

�
k

�Vk�rF�k

�
�

Vk ÿ 1

2
uk

�
uk � Pl ÿ Pr ÿ 2P� 2sC

2r
, �30�

where Vk is the velocity of the kth point. Since only

radial and translational motion of the bubble is
allowed, we have

Vk � _aer � _ZBez, �31�

with er a unit vector in the radial direction out of the
bubble center and ez a unit vector in the direction of

the tube axis. With this result, we can advance the
value of F at the N points on the bubble surface by
the one-step forward Euler method:

F�xk,t� Dt� � F�xk,t� � Dt

�
DF
Dt

�
k

: �32�

Once F has been determined at the N points from this
formula, from (6) we can write, on the bubble surface

fB � fT � Fÿ fl ÿ fr: �33�

The coe�cients {An } of fT can be expressed in terms
of the {Dn } of fB from (14), and this equation can
then be solved for the {Dn } by taking suitable scalar

products (evaluated by the trapezoidal rule at the N
surface points). Notice that fl and fr have not been

updated yet. To achieve full consistency, this equation
must be used iteratively. At the ®rst step the previous
values of fl and fr are used in the right-hand side,

then these quantities are updated using (15) and (16),
and the procedure is repeated until convergence. This
iterative procedure would work also if fT were put in

the right-hand side and treated in the same way, but
only as long as the bubble is smaller than about half
the tube diameter. For larger bubbles, the contribution

of fT to the total potential is too large for the iter-
ations to converge. If the bubble was very close to one
of the two ends of the channel, one might expect a
similar convergence di�culty and either fl or fr

should be kept in the left-hand side of the equation.
This di�culty, however, has not been encountered in
the present simulations.

With the velocity potential at t+Dt determined in
this way, one needs to ®nd the new radial and trans-
lational velocities of the bubble. For this purpose, we

form the quantity errF (i.e., we take the derivative of
the expression (6) for the potential with respect to the
distance from the bubble center) and take a scalar

product with P0, thus obtaining aÇ, and P1, which gives
ZÇB. We use the same N points on the bubble surface
used before to calculate the integrals by the trapezoidal
rule. The analogous scalar products with the higher-

order polynomials would account for the deformation
of the bubble but are disregarded in this study. With
the knowledge of aÇ and ZÇB, the new bubble radius and

position are calculated from the one-step forward
Euler formula.
The last step is the calculation of the new pressure

inside the bubble, which will be used in the Bernoulli
integral to advance to the next time level. This step
requires solving the energy equations. For the spherical
energy equation (24) we introduce the new coordinate

x � d
d� rÿ a�t� , �34�

where d is a grid control parameter of the order of the

length scale of the initial heated liquid layer (we use
d=l here). The equation written in terms of x is then
discretized on an equispaced grid (which, of course, is
not equispaced in the original variable r ) and solved

subject to the boundary condition (23). The conduc-
tion equation in the wall and the other energy equation
in the liquid, equation (29), are also solved by ®nite

di�erences, the latter one after the variable transform-
ation y=(RTÿ r )/(RTÿ a ).
After using the results of the energy equations to

calculate the heat ¯ux at the bubble surface and e�ect-
ing the integral in (23), we have a value for dTS/dt,
which can be used to advance the surface temperature
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by the one-step Euler method, after which the new
pressure and density in the bubble are found from the

saturation relations.
The switching from the spherical to the elongated

bubble model for the thermal treatment of the problem

is gradual, as described in subsection 2.2.2. For the
¯uid dynamics of the problem, one can proceed more
abruptly without adversely a�ecting the results of the

simulation. When the bubble radius is predicted to be
within 1% of the tube radius, we switch to the
elongated bubble model of subsection 2.1.2. The math-
ematical structure of this model is much simpler as the

bubble motion is only described in terms of ordinary
di�erential equations in time that are solved again by
the one-step Euler method.

While switching for the ¯uid dynamic model can be
done abruptly, some care must be exerted to avoid
jumps in the velocities. In going from the spherical to

the elongated model, the equivalent liquid column
lengths ll, lr are determined by conserving the mass of
the liquid. The initial value of the velocities Vl,r is
determined by writing the corresponding mass bal-

ances

pR2
T�Vl � _ZB� � 1

2
_VB �35�

pR2
T�Vr ÿ _ZB� � 1

2
_VB: �36�

These expressions assume that the bubble obstructs the

tube so that, in its frame of reference, half of the liquid
¯ows into the right half of the tube and half into the
left half.

3.2. Elongated bubble

The elongated bubble model consists of the dynami-

cal equations (20±22) and the one-dimensional conduc-
tion equations in the thin liquid ®lm and in the
adjacent solid. The energy equations are solved by

®nite di�erences. The solution of the conduction±con-
vection Eq. (27) along the tube axis is also e�ected by
®nite di�erences after a coordinate transformation
moving with the bubble wall, which transforms the

equation to a purely conduction form due to the
assumption of one-dimensional ¯ow during this phase.
When the bubble collapses, in switching from the

elongated model to the spherical model, we use these
same equations to ®nd aÇ and ZÇB. However, we also
have to initialize the value of the potential. For this

purpose, we calculate the radial derivatives of the po-
tential, take scalar products with P0 and P1, and
equate the results to RÇ and BÇ . This procedure deter-

Fig. 2. Bubble volume as a function of time. Channel length and radius are 5 mm and 50 mm respectively, with L/RT=100. The in-

itial bubble radius is 5 mm, so that RT/a(0)=10. The initial temperature distribution is given by Eq. (26) with DT=250 K,

T1=300 K, l=5 mm. The liquid is water. In this ®gure the results corresponding to a switching between the spherical and

elongated bubble models corresponding to values of 1%, 5%, and 10% of the parameter E de®ned in Eq. (28) are superposed. The

maximum length achieved by the bubble is about 10% of the tube length.
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mines F up to a function of time that is ®xed by
matching with the values of F21 that are calculated all
through the process from (3).
For the thermal problem the switching is done fol-

lowing in reverse order the steps outlined before.
Firstly, Eq. (29) is used for the heat transfer around
the bubble `equator'. When the bubble wall tempera-

ture satis®es (28), we return to the fully spherical
model. This stage of the bubble life is mostly governed
by inertia forces and the e�ects of the precise criterion

for the switching of the thermal model have negligible
e�ects.

4. Results

In spite of its approximate nature, the model

described in the previous sections is useful to illustrate
the trends of the system behavior with changes in the
many parameters that it involves. We shall do this by

Fig. 3. E�ective bubble growth velocity VÇB/pR
2
T vs time for the case of the previous ®gure. Note the long linear part of the curve

corresponding to essentially constant acceleration. The quantity plotted is also equal to the di�erence between the liquid velocities

at the two ends of the tube.

Fig. 4. Bubble internal pressure as a function of time for the case of Figs. 2 and 3.
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comparison with a reference situation that will be
described in detail ®rst. We assume that the pressure in

the two reservoirs at the ends of the tube is atmos-
pheric, the tube length is L=5 mm, the tube radius
RT=50 mm, so that L/RT=100. The liquid is water.

The initial temperature distribution in the liquid is
given by (26) with DT=250 K, T1=300 K, l=5 mm.
The initial bubble radius is taken to be a(0)=5 mm, so

that RT/a(0)=10. In making this choice we envisage
an experimental situation in which the liquid is pre-

heated by energizing the heater prior to the generation
of a vapor nucleus, which is induced by a short excur-
sion of the heater temperature above the homogeneous

nucleation temperature of the liquid. When this is
done, the heater becomes covered with a very thin
vapor ®lm, which can be taken to be the initial bubble

Fig. 5. Bubble surface temperature as a function of time for the case of Figs. 2±4. The increased cooling rate between 20 and 30 ms
is due to the exposure to the cold wall.

Fig. 6. Net heat ¯ow rate into the bubble for the case of Figs. 2±5 as a function of time. The three curves (barely distinguishable

from each other only around 30 ms) correspond to a switching from the spherical to the elongated bubble model when the liquid

®lm has thinned to 0.5, 1 and 2% of the tube radius.
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[14]. Hence, the parameter a(0) essentially characterizes
the heater size and the parameter l the duration of the

pre-heating phase. The use of temperatures much
above the boiling point is motivated by the need to
rely on homogeneous (or nearly-homogeneous) nuclea-
tion for repeatability of the process, as explained

before.
Fig. 2 shows the volume of the bubble as a function

of time. The curve is very regular and almost sym-

metric about the maximum, where the bubble length is
about 10% of the total channel length. This ®gure
actually shows three superposed lines corresponding to

three values of the parameter E de®ned in (28) which
determines the point at which a switching between
di�erent thermal models is e�ected, E=1, 5 and 10%.
It is clear that the precise time at which the switching

is e�ected has a negligible e�ect on the computed
results. We looked at the sensitivity to the switching
between the dynamic spherical and elongated bubble

models (see the beginning of section 2) by e�ecting the
transition when the spherical bubble radius was 99.5,
99 and 98% of the tube radius ®nding a negligible

e�ect on the time dependence of the volume.
Fig. 3 shows vÇB/pR

2
T vs time, i.e. the relative velocity

between the two bubble surface points on the tube

axis. Other than for brief instants at the beginning of
the growth and at the end of the collapse, the slope of
the line is very nearly constant, which indicates a
motion under the action of a constant force. The ex-

planation for this behavior is given in Fig. 4 which

shows the bubble internal pressure vs time. It is seen
that after about 20 ms the internal pressure becomes

negligible with respect to the ambient, so that the
motion is governed by the external pressure. The
bubble surface temperature associated with the press-
ure in Fig. 4 is shown in Fig. 5. In the ®rst 10 ms the

rapid cooling (at a rate of the order of 20� 106 K/s!)
of the bubble surface is due to the expansion and
rapid evaporation. The cooling process beginning

between 20 and 30 ms is due to the exposure to the
cold wall. Further insight into the thermal aspects of
the phenomenon is provided by Fig. 6, where the heat

¯ow rate into the bubble is plotted as a function of
time. In the very ®rst instants, according to the tem-
perature distribution (26), the heat ¯ows away from
the bubble. This phase is, however, extremely short-

lived, and the heat ¯ow rate becomes positive and
large already within the ®rst 0.05 ms. This second
phase of large heat ¯ow into the bubble is also very

short. Due to the strong cooling e�ects of expansion
and evaporation, the heat ¯ow reverses sign already
after about 3 ms, after which it remains slightly nega-

tive (signifying a heat loss by the bubble) due to vapor
condensation on the cold bubble surface. The dip
around 30 ms is due to the thinning of the liquid ®lm

separating the bubble from the wall, as is clear from
the three di�erent lines apparent in this region, which
correspond to stopping the thinning of the ®lm at 0.5,
1 and 2% of the tube radius. This is the only predic-

tion of the model that we have found to be detectably

Fig. 7. Temperature distributions near the bubble of Figs. 2±6 at 0.5, 5, 20, and 30 ms, in descending order. The lines in the right

half of this ®gure show the temperature distribution along the tube axis as functions of distance from the bubble center. The lines

in the left half of the ®gure are the temperature distributions along the bubble equator and into the solid, that occupies the region

to the left of ÿ50 mm. The dotted lines are the temperature distributions at 90 ms, i.e. near the end of the collapse. All the lines

begin at the instantaneous position of the bubble surface.
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sensitive to the switching between the spherical and
elongated bubble models. However its impact on the
overall behavior, and in particular on the total heat

transfer, is quite negligible. The heat ¯ow rate reaches
practically zero as the bubble surface temperature
reaches the ambient value, and then becomes slightly
negative as the bubble volume decreases and vapor

condenses. It is also interesting to look at the tempera-
ture distribution for points on the axis of the tube and
along the equator of the bubble and into the solid wall

(Fig. 7). The solid lines in the right half of this ®gure
show the temperature distribution in the liquid during
the bubble growth at times 0.5, 5, 20, and 30 ms as
functions of distance from the bubble center. The lines

Fig. 8. Bubble volume vs time for initial bubble radii a(0)=0.2, 0.5, 1, 2, and 5 mm (in ascending order) for a given ®xed amount

of initial liquid thermal energy. All other conditions as in Fig. 2.

Fig. 9. Bubble volume vs time for di�erent initial liquid temperature distributions Eq. (26) with l=4, 6, 8, 10, 12 mm (in ascending

order). All other conditions as in Fig. 2.
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in the left half of the ®gure are the temperature distri-
butions along the bubble equator and into the solid,
that occupies the region to the left of ÿ50 mm, at the

same times. The dotted lines are the temperature distri-
butions at 90 ms during the collapse. In this ®gure all
the lines begin at the instantaneous position of the
bubble surface. The dotted line corresponding to 90 ms
shows that the liquid around the bubble is very little

heated near the end of the collapse. One must deduce
that most of the initial thermal energy is conducted
into the wall, as this ®gure also suggests.

We can now contrast the basic features just
described with the e�ect of introducing changes in the
various parameters of the problem.
We ®rst look at the e�ect of the initial bubble size,

other conditions being the same as before. Fig. 8

Fig. 10. Bubble volume vs time for di�erent initial liquid superheats, DT=100, 150, 200, 250, 300 K (in ascending order). All other

conditions as in Fig. 2.

Fig. 11. Bubble volume vs time for di�erent channel aspect ratios L/RT=7.5, 10, 20, 50, 100, 200 (in descending order). In all

cases, the bubble is at the center of the channel. All other conditions as in Fig. 2.
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shows the e�ect of changing the initial bubble size
adjusting l so as to maintain the same total amount of

initial energy in the liquid:�1
a�0�

DT exp

�
ÿ rÿ a�0�

l

�
r2 dr � const: �37�

This constraint has the e�ect of making the heated

layer near a bigger bubble thinner. As a(0) increases
from 0.2 to 5 mm, there is a major increase in the
maximum volume and lifetime of the bubble. The
result clearly indicates that there is a big gain in ef-

®ciency concentrating the heating in the vicinity of the
bubble surface, so that more heat can be used to evap-
orate the liquid rather than being conducted away. In

practice this can be achieved by sizing and shaping the
heater in such a way that the liquid pre-heating can be
made as short as possible, compatibly with the ®nal

desired volume of the bubble.
For a given a(0)=5 mm, Fig. 9 illustrates the e�ect

of the heated layer thickness l=4, 6, 8, 10, 12 mm,

with DT ®xed at 250 K. As the layer thickness is
increased which, in practice, means a longer pre-heat-
ing, the total amount of thermal energy available also
increases, the bubble grows bigger, and lasts longer.

The bubble behavior is also very sensitive to the value
of DT, as Fig. 10 shows.
For a bubble in the center of the tube, the tube

length determines the mass of the liquid slugs that
need to be pushed outward during the growth process
and therefore has a strong e�ect on the bubble life-

time. Fig. 11 shows that, for a given initial thermal
energy, the e�ect is not monotonic, however. When the

tube length is small (e.g. L=0.75 mm, L/RT=15), the
bubble readily expels the liquid, the loading on its ends
becomes small, and the potential to induce collapse

less. As a consequence, the volume and the lifetime of
the bubble are both large. As the tube is made longer,
inertia increases, which causes a decrease of the maxi-
mum volume, but also a lengthening of the bubble life.

For the conditions of this example, the minimum life-
time is of about 53 ms and is attained for L/RT

between 10 and 20.

Finally, we show in Fig. 12 graphs of the bubble
lifetime and maximum volume as they depend on the
initial position of the bubble for L/RT=100 and two

di�erent values of l, 5 and 8 mm. In both cases, when
the bubble is generated very close to one of the tube
ends, both its lifetime and volume increase for the
same reason as mentioned before in connection with

Fig. 11. As the bubble is moved toward the middle of
the tube, the lifetime decreases and then increases
again. The minimum moves toward the open end as

the energy decreases. The bubble volume is instead
monotonic and is a minimum when the mass loading is
maximum, i.e. when the bubble is in the middle of the

tube.

5. Conclusions

In this paper we have studied the thermo-¯uid

Fig. 12. Maximum bubble volume (left scale, solid lines) and lifetime (right scale, dotted lines) versus position of the bubble center

in the channel. The lower pair of curves is for the temperature distribution Eq. (26) with l=5 mm, and the upper one for l=8 mm.

The channel aspect ratio is L/RT=100. All other conditions as in Fig. 2.
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dynamics of the growth and collapse of a vapor bubble
in a small channel connecting two liquid reservoirs.

In spite of several simpli®cations, the model exhibits
the correct qualitative trends and helps one understand
what are the controlling physical processes. While the

initial impulse to the bubble growth comes from a
strong localized superheat, already after about 10% of
the bubble lifetime the internal pressure has become

negligible and the dynamics of the bubble is governed
mostly by inertia. The maximum volume of the bubble
is found to be very sensitive to the amount of energy

available for its growth measured both in terms of
liquid superheat and thickness of the heated layer. The
implication is that in order to grow a sizeable bubble
one should either use a relatively large heater or add

thermal energy to the liquid at a slow rate, at least in-
itially. The channel wall plays an important role as a
sink of energy, which is desirable if the objective is to

grow and collapse many bubbles in sequence without
causing a signi®cant accumulated heating of the sys-
tem. The length of the channel and the position of the

bubble in it are also important factors determining the
lifetime and maximum volume of the bubble. This fact
implies that an equal heating will produce di�erent

bubbles at di�erent positions along the channel.
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